Kruskal's algorithm is a minimum-spanning-tree algorithm which finds an edge of the least possible weight that connects any two trees in the forest. It is a greedy algorithm in graph theory as it finds a minimum spanning tree for a connected weighted graph adding increasing cost arcs at each step.
import java.util.Scanner;
public class kruskal{
public static void main(String[] args){
Scanner scan = new Scanner(System.in);
int[][] matrix = new int[5][5];
int[] parent = new int[5];
int min;
int u = 0;
int v = 0;
int noOfEdges = 1;
int total = 0;
for(int i = 0; i < 5; i++){
parent[i] = 0;
for(int j = 0; j < 5; j++){
matrix[i][j] = scan.nextInt();
if(matrix[i][j]==0){
matrix[i][j] = 999;
}
}
}
while(noOfEdges < 5){
min = 999;
for(int i = 0; i < 5; i++){
for(int j = 0; j < 5; j++){
if(matrix[i][j] < min){
min = matrix[i][j];
u = i;
v = j;
}
}
}
while(parent[u]!=0){
u = parent[u];
}
while(parent[v]!=0){
v = parent[v];
}
if(v!=u){
noOfEdges++;
System.out.println("Edge Found: " + u + "->" + v+" Min : " + min);
total+=min;
parent[v] = u;
}
matrix[u][v] = 999;
matrix[v][u] = 999;
}
System.out.println("The weight of the minimum spanning tree is "+total);
}
}